CO excitation of normal star-forming galaxies out to z = 1.5 as regulated by the properties of their interstellar medium
نویسندگان
چکیده
We investigate the CO excitation of normal (near-IR selected BzK) star-forming (SF) disk galaxies at z = 1.5 using IRAM Plateau de Bure observations of the CO[2–1], CO[3–2], and CO[5–4] transitions for four galaxies, including VLA observations of CO[1–0] for three of them, with the aim of constraining the average state of H2 gas. By exploiting previous knowledge of the velocity range, spatial extent, and size of the CO emission, we measure reliable line fluxes with a signal-to-noise ratio >4–7 for individual transitions. While the average CO spectral line energy distribution (SLED) has a subthermal excitation similar to the Milky Way (MW) up to CO[3–2], we show that the average CO[5–4] emission is four times stronger than assuming MW excitation. This demonstrates that there is an additional component of more excited, denser, and possibly warmer molecular gas. The ratio of CO[5–4] to lower-J CO emission is lower than in local (ultra-)luminous infrared galaxies (ULIRGs) and high-redshift starbursting submillimeter galaxies, however, and appears to be closely correlated with the average intensity of the radiation field 〈U〉 and with the star formation surface density, but not with the star formation efficiency. The luminosity of the CO[5–4] transition is found to be linearly correlated with the bolometric infrared luminosity over four orders of magnitudes. For this transition, z = 1.5 BzK galaxies follow the same linear trend as local spirals and (U)LIRGs and high-redshift star-bursting submillimeter galaxies. The CO[5–4] luminosity is thus empirically related to the dense gas and might be a more convenient way to probe it than standard high-density tracers that are much fainter than CO. We see excitation variations among our sample galaxies that can be linked to their evolutionary state and clumpiness in optical rest-frame images. In one galaxy we see spatially resolved excitation variations, where the more highly excited part of the galaxy corresponds to the location of massive SF clumps. This provides support to models that suggest that giant clumps are the main source of the high-excitation CO emission in high-redshift disk-like galaxies.
منابع مشابه
Metallicities and Physical Conditions in Star-forming Galaxies at Z∼1.0-1.5
We present a study of the mass-metallicity (M-Z) relation and H II region physical conditions in a sample of 20 star-forming galaxies at 1.0 < z < 1.5 drawn from the DEEP2 Galaxy Redshift Survey. We find a correlation between stellar mass and gas-phase oxygen abundance in the sample, and compare it with the one observed among UV-selected z ∼ 2 star-forming galaxies and local objects from the Sl...
متن کاملStellar Populations in the Central Galaxies of Fossil Groups
It is inferred from the symmetrical and luminous X-ray emission of fossil groups that they are mature, relaxed galaxy systems. Cosmological simulations and observations focusing on their dark halo and inter-galactic medium properties confirm their early formation. Recent photometric observations suggest that, unlike the majority of non-fossil brightest group galaxies (BGGs), the central early-t...
متن کاملThe nature of the [CII] emission in dusty star-forming galaxies from the SPT survey
We present [CII] observations of 20 strongly lensed dusty star forming galaxies at 2.1 < z < 5.7 using APEX and Herschel. The sources were selected on their 1.4 mm flux (S1.4mm > 20 mJy) from the South Pole Telescope survey, with far-infrared (FIR) luminosities determined from extensive photometric data. The [CII] line is robustly detected in 17 sources, all but one being spectrally resolved. E...
متن کاملConstraints on the Star-Forming Interstellar Medium in Galaxies Back to the First Billion Years of Cosmic Time
Constraints on the molecular gas content of galaxies at high redshift are crucial to further our understanding of star formation and galaxy evolution through cosmic times, as molecular gas is the fuel for star formation. Since its initial detection at large cosmic distances almost two decades ago, studies of molecular gas in the early universe have come a long way. We have detected CO emission ...
متن کاملstar-forming galaxies from the SPT survey
Wepresent [C II] observations of 20 strongly lensed dusty star-forming galaxies at 2.1 20mJy) from the South Pole Telescope (SPT) survey, with far-infrared (FIR) luminosities determined from extensive photometric data. The [C II] line is robustly detected in 17 sources, all but one ...
متن کامل